Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.473
Filtrar
1.
J Ethnopharmacol ; 328: 118132, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38565411

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Infections caused by parasitic worms or helminth continue to pose a great burden on human and animal health, particularly in underdeveloped tropical and subtropical countries where they are endemic. Current anthelmintic drugs present serious limitations and the emergence of drug resistance has made it increasingly challenging to combat such infections (helminthiases). In Bangladesh, medicinal plants are often used by indigenous communities for the treatment of helminthiases. Knowledge on such plants along with screening for their anthelmintic activity has the potential to lead to the discovery of phytochemicals that could serve as novel molecular scaffolds for the development of new anthelminthic drugs. AIM OF THE STUDY: The purpose of this study was i) to conduct an ethnobotanical survey to gather data on Bangladeshi medicinal plants used in the treatment of helminthiases, ii) to test plants with the highest use values for their in vitro anthelmintic activity, and iii) to carry out in silico screening on phytochemicals present in the most active plant extract to investigate their ability to disrupt ß-tubulin function in helminths. METHODS: The ethnobotanical survey was conducted across three sub-districts of Bangladesh, namely Mathbaria, Phultala and Khan Jahan Ali. The in vitro screening for anthelmintic activity was performed in a motility test using adult Haemonchus contortus worms. Virtual screening using PyRx was performed on the phytochemicals reported from the most active plant, exploring their interactions with the colchicine binding site of the ß-tubulin protein target (PDB ID: 1SA0). RESULTS: The survey respondents reported a total of 32 plants for treating helminthiases. Based on their use values, the most popular choices were Ananas comosus (L.) Merr., Azadirachta indica A.Juss., Carica papaya L., Citrus maxima (Burm.) Merr., Curcuma longa L., Momordica charantia L., Nigella sativa L. and Syzygium cumini (L.) Skeels. In vitro anthelmintic testing revealed that A. indica leaves and bark had the highest activity with LC50 values of 16 mg/mL in both cases. Other plant extracts also exhibited good anthelmintic activity with LC50 values ranging from 16 to 52 mg/mL, while the value for albendazole (positive control) was 8.39 mg/mL. The limonoids nimbolide and 28-deoxonimbolide showed a binding affinity of -8.9 kcal/mol, and satisfied all drug-likeness parameters. The control ligand N-deacetyl-N-(2-mercaptoacetyl)colchicine had a binding affinity of -6.9 kcal/mol. CONCLUSION: Further in silico and in vitro studies are warranted on the identified limonoids to confirm the potential of these derivatives as novel drug templates for helminthiases. The current study supports the need for an ethnobotanical survey-based approach to discover novel drug templates for helminthiases.


Assuntos
Anti-Helmínticos , Haemonchus , Helmintíase , Limoninas , Plantas Medicinais , Adulto , Animais , Humanos , Plantas Medicinais/química , Tubulina (Proteína) , Anti-Helmínticos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Colchicina
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612409

RESUMO

Limonoids are extremely diversified in plants, with many categories of products bearing an intact, rearranged or fragmented oxygenated scaffold. A specific subgroup of fragmented or degraded limonoids derives from the tetranortriterpenoid prieurianin, initially isolated from the tree Trichilia prieuriana but also found in other plants of the Meliaceae family, including the more abundant species Aphanamixis polystachya. Prieurianin-type limonoids include about seventy compounds, among which are dregeanin and rohitukin. Prieurianin and analogs exhibit insecticidal, antimicrobial, antiadipogenic and/or antiparasitic properties but their mechanism of action remains ill-defined at present. Previous studies have shown that prieurianin, initially known as endosidin 1, stabilizes the actin cytoskeleton in plant and mammalian cells via the modulation of the architecture and dynamic of the actin network, most likely via interference with actin-binding proteins. A new mechanistic hypothesis is advanced here based on the recent discovery of the targeting of the chaperone protein Hsp47 by the fragmented limonoid fraxinellone. Molecular modeling suggested that prieurianin and, to a lesser extent dregeanin, can form very stable complexes with Hsp47 at the protein-collagen interface. Hsp-binding may account for the insecticidal action of the product. The present review draws up a new mechanistic portrait of prieurianin and provides an overview of the pharmacological properties of this atypical limonoid and its chemical family.


Assuntos
Inseticidas , Limoninas , Meliaceae , Animais , Limoninas/farmacologia , Citoesqueleto de Actina , Actinas , Antiparasitários , Inseticidas/farmacologia , Mamíferos
3.
Molecules ; 29(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611907

RESUMO

The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.


Assuntos
Inseticidas , Limoninas , Oxigenases , Inseticidas/farmacologia , Ecdisona , Limoninas/farmacologia , Muda
4.
Food Chem ; 447: 138989, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38492297

RESUMO

Limonin is an intensely bitter and highly oxidized tetracyclic triterpenoid secondary metabolite, which is abundant in the Rutaceae and Meliaceae, especially in Citrus. In order to detect limonin content in complex substrates such as citrus and traditional Chinese medicine, monoclonal antibodies specifically recognizing limonin were prepared and an indirect competitive enzyme-linked immunosorbent assay (icELISA) was established. The median inhibition concentration (IC50) was 5.40 ng/mL and the linear range was 1.25-23.84 ng/mL. The average recoveries from citrus peel and pulp samples were 95.9%-118.8% and 77.5%-113.1%, respectively. Moreover, the contents of limonin in 6 citrus samples and 4 herbal samples were analyzed by icELISA and UPLC-MS, and the results of the two methods were consistent. This validation is sufficient to demonstrate that the developed immunoassay is applicable for the detection of limonin in citrus and herbal samples and has the advantage of high efficiency, sensitivity, and convenience.


Assuntos
Citrus , Limoninas , Anticorpos Monoclonais , Limoninas/análise , Ensaio de Imunoadsorção Enzimática/métodos , Citrus/química , Cromatografia Líquida , Espectrometria de Massas em Tandem
5.
Pestic Biochem Physiol ; 199: 105778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458685

RESUMO

With their remarkable bioactivity and evolving commercial importance, plant secondary metabolites (PSMs) have gained significant research interest in recent years. Plant tissue culture serves as a credible tool to examine how abiotic stresses modulate the production of PSMs, enabling clear insights into plant stress responses and the prospects for controlled synthesis of bioactive compounds. Azadirachta indica, or neem has been recognized as a repository of secondary metabolites for centuries, particularly for the compound named azadirachtin, due to its bio-pesticidal and high antioxidant properties. Introducing salt stress as an elicitor makes it possible to enhance the synthesis of secondary metabolites, specifically azadirachtin. Thus, in this research, in vitro callus cultures of neem were micro-propagated and induced with salinity stress to explore their effects on the production of azadirachtin and identify potential proteins associated with salinity stress through comparative shotgun proteomics (LCMS/MS). To induce salinity stress, 2-month-old calli were subjected to various concentrations of NaCl (0.05-1.5%) for 4 weeks. The results showed that the callus cultures were able to adapt and survive in the salinity treatments, but displayed a reduction in fresh weight as the NaCl concentration increased. Notably, azadirachtin production was significantly enhanced in the salinity treatment compared to control, where 1.5% NaCl-treated calli produced the highest azadirachtin amount (10.847 ± 0.037 mg/g DW). The proteomics analysis showed that key proteins related to primary metabolism, such as defence, energy, cell structure, redox, transcriptional and photosynthesis, were predominantly differentially regulated (36 upregulated and 93 downregulated). While a few proteins were identified as being regulated in secondary metabolism, they were not directly involved in the synthesis of azadirachtin. In conjunction with azadirachtin elicitation, salinity stress treatment could therefore be successfully applied in commercial settings for the controlled synthesis of azadirachtin and other plant-based compounds. Further complementary omics approaches can be employed to enhance molecular-level modifications, to facilitate large-scale production of bioactive compounds in the future.


Assuntos
Azadirachta , Limoninas , Azadirachta/química , Azadirachta/metabolismo , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteômica , Limoninas/farmacologia
6.
Org Biomol Chem ; 22(11): 2182-2186, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38390690

RESUMO

Three novel phragmalin-type limonoids, swieteliacates S-U (1-3), were isolated from Swietenia macrophylla leaves, alongside four previously identified limonoids (4-7). The structures, encompassing absolute configurations, were delineated through 1D and 2D NMR analyses, high-resolution mass spectrometry (HR-MS), and NMR and ECD calculations. Swieteliacate S (1) is a distinctive cryptate comprising a tricyclo[4.2.110,30.11,4]decane fragment and an additional five-membered oxygen ring. Compounds 3 and 5 exhibited inhibition rates of 26.08 ± 2.26% and 15.42 ± 3.66%, respectively, on triglyceride (TG) production in Hep G2 cells at 40 µM.


Assuntos
Limoninas , Meliaceae , Limoninas/química , Limoninas/farmacologia , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Meliaceae/química
7.
Microb Pathog ; 189: 106575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423405

RESUMO

BACKGROUND: The bacterial pathogen, Flavobacterium columnare causes columnaris disease in Labeo rohita globally. Major effects of this bacterial infection include skin rashes and gill necrosis. Nimbolide, the key ingredient of the leaf extract of Azadirachta indica possesses anti-bacterial properties effective against many microorganisms. Nano-informatics plays a promising role in drug development and its delivery against infections caused by multi-drug-resistant bacteria. Currently, studies in the disciplines of dentistry, food safety, bacteriology, mycology, virology, and parasitology are being conducted to learn more about the wide anti-virulence activity of nimbolide. METHODS: The toxicity of nimbolide was predicted to determine its dosage for treating bacterial infection in Labeo rohita. Further, comparative 3-D structure prediction and docking studies are done for nimbolide conjugated nanoparticles with several key target receptors to determine better natural ligands against columnaris disease. The nanoparticle conjugates are being designed using in-silico approaches to study molecular docking interactions with the target receptor. RESULTS: Bromine conjugated nimbolide shows the best molecular interaction with the target receptors of selected species ie L rohita. Nimbolide comes under the class III level of toxic compound so, attempts are made to reduce the dosage of the compound without compromising its efficiency. Further, bromine is also used as a common surfactant and can eliminate heavy metals from wastewater. CONCLUSION: The dosage of bromine-conjugated nimbolide can be reduced to a non-toxic level and thus the efficiency of the Nimbolide can be increased. Moreover, it can be used to synthesize nanoparticle composites which have potent antibacterial activity towards both gram-positive and gram-negative bacteria. This material also forms a good coating on the surface and kills both airborne and waterborne bacteria.


Assuntos
Cyprinidae , Doenças dos Peixes , Infecções por Flavobacteriaceae , Infecções por Bactérias Gram-Negativas , Limoninas , Animais , Nanoconjugados , Antibacterianos/farmacologia , Simulação de Acoplamento Molecular , Bromo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Flavobacterium , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/microbiologia
8.
Phytochemistry ; 220: 114009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342289

RESUMO

Seven previously undescribed preurianin-type limonoids, namely paraxylines A-G, and three known analogs were isolated from stem bark of Dysoxylum parasiticum. The structures, including absolute configurations, were established through spectroscopic analyses, quantum chemical calculations using the density functional theory method, as well as the DP4+ algorithm. Paraxylines A-G were identified as the first preurianin-type with full substitution at C, D-rings, leading to the highly oxygenated seco-limonoids skeleton. The secreted alkaline phosphate assay against an engineered human and murine TLR4 of HEK-Blue cells was performed to evaluate the immune regulating effects. Among them, paraxyline B was found to be a remarkable TLR4 agonist whereas two analogs (toonapubesins A and B) were found to antagonise lipopolysaccharide stimulation of the TLR4 pathway. Paraxylines A and C-E acted either as agonists or antagonists depending on the origin of the TLR4 receptor (human or mouse). The effect of these selected compounds on the expression of pro-inflammatory cytokines TNF-α, IL-1α, IL-1ß, and IL-6 of the NF-κB signaling pathway were examined in macrophage cell lines, revealing dose-dependent effects. Additionally, paraxylines A, C, D, and G also presented modest cytotoxic activity against MCF-7 and HeLa cell lines with IC50 values ranging from 23.1 to 43.5 µM.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Limoninas , Meliaceae , Humanos , Animais , Camundongos , Limoninas/farmacologia , Limoninas/química , Receptor 4 Toll-Like , Células HeLa , Casca de Planta/química , Estrutura Molecular , Antineoplásicos Fitogênicos/química , Meliaceae/química
9.
Molecules ; 29(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338394

RESUMO

Eight vilasinin-class limonoids, including the unusually chlorinated rubescins K-M (1-3), the 2,3-epoxylated rubescin N (4), and rubescins O-R (5-8), were newly isolated from Trichilia rubescens. The structures of the isolated compounds were determined through spectroscopic and spectrometric analyses, as well as ECD calculations. The natural occurrence of chlorinated limonoids 1-3 was confirmed by chemical methods and HPLC analysis of a roughly fractionated portion of the plant extract. Eight selected limonoids, including previously known and new compounds, were evaluated for antiproliferative activity against five human tumor cell lines. All tested limonoids, except 8, exhibited significant potency, with IC50 values of <10 µM; in particular, limonoid 14 strongly inhibited tumor cell growth, with IC50 values of 0.54-2.06 µM against all tumor cell lines, including multi-drug-resistant cells.


Assuntos
Limoninas , Meliaceae , Humanos , Limoninas/química , Linhagem Celular Tumoral , Meliaceae/química , Estrutura Molecular
10.
Food Funct ; 15(5): 2679-2692, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38375746

RESUMO

High-fat diet (HFD)-induced dyslipidemia is frequently accompanied by gut microbiota dysbiosis and a compromised gut barrier. Enhancing the intestinal barrier function emerges as a potential therapeutic approach for dyslipidemia. The ILC3-IL22-IL22R pathway, which responds to dietary and microbial signals, has not only attracted attention for its crucial role in maintaining the intestinal barrier, but recent reports have also suggested its potential in regulating lipid metabolism. Limonin is derived from the Chinese herb Evodiae fructus, which has shown potential in ameliorating dysbiosis of serum lipids. However, its underlying mechanisms remain elusive. Consequently, targeting the ILC3-IL22-IL22R pathway to enhance intestinal barrier function holds promise as a therapeutic approach for dyslipidemia. In this study, male C57BL/6 mice were subjected to a 16-week HFD to induce dyslipidemia and concurrently administered oral limonin. We discovered that limonin supplementation dramatically reduced serum lipid profiles in HFD-fed mice, significantly curbing HFD-induced weight gain and epididymal fat accumulation. Ileal histopathological evaluation indicated limonin's ameliorative effects on HFD-induced intestinal barrier impairment. Limonin also moderated the intestinal microbiota dysbiosis, which is characterized by the elevation of Firmicutes in HFD mice, and notably amplified the abundance of probiotic Lactobacillus. In addition, supported by flow cytometry and other analyses, we observed that limonin upregulated the ILC3-IL22-IL22R pathway, enhancing phosphorylated STAT3 (pSTAT3) in intestinal epithelial cells (IECs), thereby reducing lipid transporter expression. In conclusion, our study revealed that limonin exerted a promising preventive effect against HFD-induced dyslipidemia by the mitigation of the intestinal barrier function and intestinal microbiota, and its mechanism was related to the upregulation of the ILC3-IL22-IL22R pathway.


Assuntos
Dislipidemias , Microbioma Gastrointestinal , Limoninas , Masculino , Animais , Camundongos , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Disbiose/metabolismo , Limoninas/farmacologia , Camundongos Endogâmicos C57BL , Lipídeos , Dislipidemias/tratamento farmacológico , Dislipidemias/etiologia
11.
Theriogenology ; 218: 8-15, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290232

RESUMO

To investigate the effects of limonin (Lim) on oxidative stress and early apoptosis in bovine oocytes during in vitro maturation (IVM), different concentrations of Lim (0, 10, 20, 50 µmol/L) were added to bovine IVM medium. Oocyte maturation rates and development 24 h after in vitro fertilization (IVF) were examined to determine the optimal Lim concentration. The optimal Lim concentration was added to the IVM medium, and 0 µmol/L Lim was used as the control. Immunofluorescence staining was used to detect the abnormal rate of spindle assembly, reactive oxygen species (ROS), glutathione (GSH), mitochondrial membrane potential (MMP) levels, mitochondrial distribution, and the fluorescence intensity of cathepsin B (CB)-active LC3 protein. RT‒qPCR was used to detect the mRNA expression levels of antioxidant-, apoptosis- and autophagy-related genes in oocytes. The total number of blastocysts and the proportion of apoptotic cells among blastocysts were detected. The results showed that the PBI ejection rate, cleavage rate and blastocyst rate of bovine oocytes in the 20 µmol/L Lim group were significantly higher than those in the control group (P < 0.05). Compared with those in the control group, ROS levels, abnormal mitochondrial distribution, the proportion of abnormal spindle assembly, CB activity and LC3 protein fluorescence intensity of oocytes in the 20 µmol/L Lim group were significantly decreased (P < 0.05), and GSH and MMP levels were significantly increased (P < 0.05). The expression of antioxidant genes (Prdx3, Prdx6, Sirt1) and antiapoptotic genes (Bcl-xl, Survivin) were significantly upregulated (P < 0.05), and the expression levels of proapoptotic genes (Caspase-4, BAX) and autophagy-related genes (LC3) were significantly downregulated (P < 0.05). The total number of cells among in vitro fertilized embryos was significantly increased (P < 0.05), and the apoptosis rate of blastocysts was significantly decreased (P < 0.05). Here, we show that Lim exerts positive effects on bovine oocyte IVM by regulating REDOX homeostasis, reducing spindle damage and enhancing mitochondrial function during IVM, thereby inhibiting oocyte apoptosis and autophagy.


Assuntos
Antioxidantes , Limoninas , Animais , Bovinos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Limoninas/metabolismo , Limoninas/farmacologia , Oócitos/fisiologia , Estresse Oxidativo , Glutationa/metabolismo , Blastocisto/fisiologia , Apoptose , Desenvolvimento Embrionário
12.
J Agric Food Chem ; 72(3): 1462-1472, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197605

RESUMO

Insects' lipids, including fatty acids, as the second largest constituents in insects, play a variety of fundamental and vital functions. However, there is a lack of reports on the effects of insect growth regulators on fatty acid profiles and metabolic mechanisms. Therefore, in this study, a comparative study of three growth regulators, azadirachtin, pyriproxyfen, and tebufenozide, on fatty acids was carried out using a targeted metabolomics approach to fill this gap. The results showed that when exposed to azadirachtin, pyriproxyfen, and tebufenozide, there were 14, 17, and 11 differentially regulated fatty acids, respectively. The pathway of biosynthesis of unsaturated fatty acids was the common shared pathway, while fatty acid biosynthesis and linoleic acid metabolism were the specific pathways affected by the 3 insect growth regulators. Therefore, the results could be helpful to deepen the effects of azadirachtin and insect growth regulators on terrestrial insects.


Assuntos
Ácidos Graxos , Hidrazinas , Hormônios Juvenis , Limoninas , Piridinas , Tephritidae , Animais , Hormônios Juvenis/farmacologia , Larva , Ácidos Graxos/metabolismo , Insetos , Metaboloma
13.
Anal Methods ; 16(7): 1034-1042, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38265638

RESUMO

In this work, a microfluidic paper-based analytical device (µPAD) was developed to detect the biopesticide azadirachtin (Aza) through a colorimetric assay. High precision estimation of Aza is classically carried out using high performance liquid chromatography (HPLC), which requires highly skilled personnel. Acidified vanillin is a commonly used colorimetric indicator in thin layer chromatography for detection of various phytochemicals. However, the assay involves concentrated acid, which limits the choice of paper substrates for paper-based sensors and raises safety concerns. In this work, we show how the assay can be extended from the liquid phase to a paper substrate. Glass microfiber (GMF) filter paper was found to be suitable paper as it was acid resistant; besides, its hydrophilicity enabled smooth flow of reagents. A microfluidic paper-based sensor (µPAD) was developed by sandwiching 5 mm sized GMF dots between two parafilm sheets. We demonstrate the use of colorimetric assay on the µPAD for on-site detection of Aza in neem kernels. The magenta color developed upon the reaction of acidified vanillin with Aza was captured using a smart-phone and analysed using RGB levels in the image. Calibration was established using neem kernel extract of known concentration. Linearity was seen in the concentration range of 5 to 25 mg L-1 Aza. A limit of detection of 2.3 mg L-1 was obtained using this method. The colorimetric assay showed a relative recovery of >85% when compared with the values obtained from HPLC. The stability of the reagents on the GMF sensor was investigated to understand the storage conditions and shelf life of the reagents and sensor. The present work demonstrates the development of a portable sensor for on-site detection of phytochemicals that can be an integral part of the agricultural supply chain.


Assuntos
Azadirachta , Limoninas , Fator de Maturação da Glia , Limoninas/análise , Limoninas/química , Benzaldeídos
14.
Org Lett ; 26(5): 1073-1077, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38277646

RESUMO

Asymmetric de novo construction of limonoids remains a challenging problem in stereoselective synthesis due to the diverse and complex structures associated with this class of natural products. Here, a unique synthetic pathway to an "intact" limonoid system is described. The synthetic route is based on exploiting an oxidative rearrangement reaction of a densely functionalized late-stage intermediate to simultaneously establish the stereodefined C10 quaternary center and an allylic acetate at C12. This is a unique example of a complex rearrangement reaction that proceeds on a system whose presumed intermediate allyl cation is highly hindered and lacks neighboring protons that are otherwise required for cation termination.


Assuntos
Limoninas , Cátions , Limoninas/síntese química , Estereoisomerismo
15.
J Transl Med ; 22(1): 84, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245717

RESUMO

BACKGROUND: The main challenge in personalized treatment of breast cancer (BC) is how to integrate massive amounts of computing resources and data. This study aimed to identify a novel molecular target that might be effective for BC prognosis and for targeted therapy by using network-based multidisciplinary approaches. METHODS: Differentially expressed genes (DEGs) were first identified based on ESTIMATE analysis. A risk model in the TCGA-BRCA cohort was constructed using the risk score of six DEGs and validated in external and clinical in-house cohorts. Subsequently, independent prognostic factors in the internal and external cohorts were evaluated. Cell viability CCK-8 and wound healing assays were performed after PTGES3 siRNA was transiently transfected into the BC cell lines. Drug prediction and molecular docking between PTGES3 and drugs were further analyzed. Cell viability and PTGES3 expression in two BC cell lines after drug treatment were also investigated. RESULTS: A novel six-gene signature (including APOOL, BNIP3, F2RL2, HINT3, PTGES3 and RTN3) was used to establish a prognostic risk stratification model. The risk score was an independent prognostic factor that was more accurate than clinicopathological risk factors alone in predicting overall survival (OS) in BC patients. A high risk score favored tumor stage/grade but not OS. PTGES3 had the highest hazard ratio among the six genes in the signature, and its mRNA and protein levels significantly increased in BC cell lines. PTGES3 knockdown significantly inhibited BC cell proliferation and migration. Three drugs (gedunin, genistein and diethylstilbestrol) were confirmed to target PTGES3, and genistein and diethylstilbestrol demonstrated stronger binding affinities than did gedunin. Genistein and diethylstilbestrol significantly inhibited BC cell proliferation and reduced the protein and mRNA levels of PTGES3. CONCLUSIONS: PTGES3 was found to be a novel drug target in a robust six-gene prognostic signature that may serve as a potential therapeutic strategy for BC.


Assuntos
Neoplasias da Mama , Limoninas , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Dietilestilbestrol , Genisteína , Simulação de Acoplamento Molecular , Prognóstico , RNA Mensageiro
16.
Nat Prod Res ; 38(5): 891-896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37074699

RESUMO

Limonoids serve as vital secondary metabolites. Citrus limonoids show a wide range of pharmacological potential. As a result of which limonoids from citrus are of considerable research interest. Identification of new therapeutic molecules from natural origins has been widely adopted as a successful strategy in drug discovery. This work mainly focused on the high-throughput computational exploration of the antiviral potential of three vital limonoids, i.e. Obacunone, Limonin and Nomilin against spike proteins of SARS CoV-2 (PDB:6LZG), Zika virus NS3 helicase (PDB:5JMT), Serotype 2 RNA dependent RNA polymerase of dengue virus (PDB:5K5M). Herein we report the molecular docking, MD simulation studies of nine docked complexes, and density functional theory (DFT) of selected limonoids. The results of this study indicated that all three limonoids have good molecular features but out of these three obacunone exerted satisfactory results for DFT, docking and MD simulation study.


Assuntos
Benzoxepinas , Limoninas , Infecção por Zika virus , Zika virus , Humanos , Limoninas/farmacologia , Limoninas/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Antivirais/farmacologia
17.
Appl Biochem Biotechnol ; 196(1): 182-202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37103738

RESUMO

The non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancers. It is usually diagnosed at an advanced stage with poor prognosis. Nimbolide (NB), a terpenoid limonoid isolated from the flowers and leaves of neem tree, possesses anticancer properties in various cancer cell lines. However, the underlying mechanism of its anticancer effect on human NSCLC cells remains unclear. In the present study, we investigated the effect of NB on A549 human NSCLC cells. We found that NB treatment inhibits A549 cells colony formation in a dose-dependent manner. Mechanistically, NB treatment increases cellular reactive oxygen species (ROS) level, leading to endoplasmic reticulum (ER) stress, DNA damage, and eventually induction of apoptosis in NSCLC cells. Furthermore, all these effects of NB were blocked by pretreatment with antioxidant glutathione (GSH), the specific ROS inhibitor. We further knockdown CHOP protein by siRNA markedly reduced NB-induced apoptosis in A549 cells. Taken together, our findings reveal that NB is an inducer of ER stress and ROS; these findings may contribute to increasing the therapeutic efficiency of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Limoninas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Limoninas/farmacologia , Limoninas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Dano ao DNA , Estresse do Retículo Endoplasmático/genética , Linhagem Celular Tumoral
18.
Chem Biodivers ; 21(2): e202301703, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38055204

RESUMO

Three undescribed limonoids (1-3), named aglaians G-I, and one new natural product azedaralide (4), together with nine known analogues (5-13) were isolated from the branches and leaves of Aglaia lawii by RP C18 column, silica gel column, Sephadex LH-20 column chromatography and preparative HPLC. The structures of the new compounds were elucidated by IR, HRESIMS, 1D, 2D NMR, electronic circular dichroism (ECD) calculations and X-ray crystallography diffraction analysis. The results of bioassay showed that the compound 12 exhibited potential inhibitory activity against six human tumor cell lines (MDA-MB-231, MCF-7, Ln-cap, A549, HeLa and HepG-2) with IC50 values as 8.0-18.6 µM.


Assuntos
Aglaia , Antineoplásicos , Limoninas , Humanos , Aglaia/química , Limoninas/farmacologia , Limoninas/química , Estrutura Molecular , Linhagem Celular Tumoral
19.
Colloids Surf B Biointerfaces ; 234: 113670, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042108

RESUMO

Self-healing hydrogels have shown great application potential in drug delivery for anti-tumor therapy and tissue engineering. In this research, Doxorubicin (DOX) was coupled onto the oxidized pectin (pec-Ald) to prepare DOX grafted pec-AD and used to fabricate self-healing hydrogel for lung cancer therapy combined with novel herbal medicine extract limonin targeting lung cancer cells. The hydrogel was prepared with P(NIPAM195-co-AH54) cross-linking and the hydrazone bond cross-linked hydrogel showed good mechanical property and self-healing behavior. With pectin composition, the hydrogel was still biodegradable catalyzed by enzyme and in vivo. The hydrogel formed fast fit for injectable application and the hydrogel itself showed moderate lung cancer inhibition activity. With limonin loading, the hydrogel showed synergistic lung cancer therapy with the tumor growth greatly inhibited. The covalent coupling of DOX and loaded limonin in the hydrogel decreased in vivo toxicity and the hydrogel degraded on time. With biodegradability and improved lung cancer therapy efficiency, this DOX grafted self-healing hydrogel could find great potential application in cancer therapy in near future.


Assuntos
Limoninas , Neoplasias Pulmonares , Humanos , Pectinas , Hidrogéis/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias Pulmonares/tratamento farmacológico
20.
Fitoterapia ; 173: 105765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38042506

RESUMO

A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against H2O2 exposure; 1 (83.77% ± 1.84 at 12.5 µM), 2 (69.07 ± 2.01 at 12.5 µM), 3 (80.38 ± 2.1 at 12.5 µM), 4 (62.33 ± 1.95 at 25 µM),5 (58.67 ± 1.85 at 50 µM) and 7 (66.07 ± 2.03 at 12.5 µM). Interestingly, 1 and 3 demonstrated comparable protective effects to positive control epigallocatechin gallate (EGCG) with similar cell viability capacity (≈ 80%), having achieved that at lower concentration (12.5 µM) than EGCG (50 µM). Collectively, the results suggested the promising use of 1 and 3 as potential neuroprotective agents against hydrogen peroxide-induced cytotoxicity in neuronal model.


Assuntos
Limoninas , Meliaceae , Fármacos Neuroprotetores , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Peróxido de Hidrogênio , Limoninas/farmacologia , Limoninas/química , Meliaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...